Skip to main content

Fourier Transform Properties

A complete reference of the key properties of the Fourier transform. If f(t) \leftrightarrow F(\omega) and g(t) \leftrightarrow G(\omega), the following relationships hold.

Convention: \mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t)\,e^{-j\omega t}\,dt

Properties Reference Table

# Property Time Domain Frequency Domain Notes
1 Linearity a\,f(t) + b\,g(t) a\,F(\omega) + b\,G(\omega) Superposition; a,b \in \mathbb{C}
2 Time Shifting f(t - t_0) e^{-j\omega t_0}\,F(\omega) Delay → phase shift; magnitude unchanged
3 Frequency Shifting e^{j\omega_0 t}\,f(t) F(\omega - \omega_0) Modulation; shifts spectrum
4 Time Scaling f(at) \frac{1}{|a|}\,F\!\left(\frac{\omega}{a}\right) Compress time → expand freq; a \neq 0
5 Time Reversal f(-t) F(-\omega) Special case of scaling with a = -1
6 Conjugation f^*(t) F^*(-\omega) For real f: F(-\omega) = F^*(\omega)
7 Duality F(t) 2\pi\,f(-\omega) Swap time ↔ frequency roles
8 Convolution f(t) * g(t) F(\omega)\,G(\omega) Convolution ↔ multiplication
9 Multiplication f(t)\,g(t) \frac{1}{2\pi}\,F(\omega) * G(\omega) Windowing; dual of convolution
10 Time Differentiation \frac{d^n f}{dt^n} (j\omega)^n\,F(\omega) Derivatives become multiplication
11 Freq. Differentiation (-jt)^n\,f(t) \frac{d^n F}{d\omega^n} Multiply by t → differentiate in \omega
12 Integration \int_{-\infty}^{t} f(\tau)\,d\tau \frac{F(\omega)}{j\omega} + \pi F(0)\,\delta(\omega) Requires F(0) term for DC
13 Parseval's Theorem \int_{-\infty}^{\infty}|f(t)|^2\,dt \frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2\,d\omega Energy conservation
14 Cross-Correlation R_{fg}(\tau) = \int f^*(t)\,g(t+\tau)\,dt F^*(\omega)\,G(\omega) Correlation theorem
15 Cosine Modulation f(t)\cos(\omega_0 t) \frac{1}{2}[F(\omega - \omega_0) + F(\omega + \omega_0)] AM modulation; spectrum copies

Property Details

The Convolution Theorem

Perhaps the single most important property. It states that convolution in one domain corresponds to pointwise multiplication in the other:

\mathcal{F}\{f * g\} = F \cdot G
\mathcal{F}\{f \cdot g\} = \frac{1}{2\pi}(F * G)

This is the foundation of fast filtering: convolving two length-N sequences directly costs O(N^2), but via FFT it costs O(N \log N).

Parseval's Theorem (Energy Conservation)

Total energy computed in the time domain equals total energy computed in the frequency domain:

E = \int_{-\infty}^{\infty}|f(t)|^2\,dt = \frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2\,d\omega

For the DFT the discrete analog is:

\sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N}\sum_{k=0}^{N-1}|X[k]|^2

Differentiation Property

Differentiation in time becomes multiplication by j\omega in frequency. This converts differential equations into algebraic equations — the core idea behind using transforms to solve ODEs and PDEs.

\frac{df}{dt} \leftrightarrow j\omega\,F(\omega), \qquad \frac{d^2f}{dt^2} \leftrightarrow (j\omega)^2\,F(\omega)

Each derivative multiplies the high-frequency content by \omega, amplifying noise — this is why numerical differentiation is ill-conditioned.

Symmetry Properties of Real Signals

When f(t) is real-valued, its Fourier transform has conjugate symmetry:

F(-\omega) = F^*(\omega)

This means:

  • Magnitude spectrum is even: |F(-\omega)| = |F(\omega)|
  • Phase spectrum is odd: \angle F(-\omega) = -\angle F(\omega)
  • Real part is even, imaginary part is odd

Additionally, if f(t) is both real and even, then F(\omega) is purely real and even.

Continue Exploring

See the complete table of transform pairs, or grab the printable cheat sheet.