Skip to main content

Common Fourier Transform Pairs

A comprehensive table of Fourier transform pairs showing the time-domain function f(t) and its frequency-domain counterpart F(\omega). All pairs use the angular frequency convention.

Convention: F(\omega) = \int_{-\infty}^{\infty} f(t)\,e^{-j\omega t}\,dt

Basic Pairs

Fundamental pairs that form the building blocks of Fourier analysis.

# Name f(t) F(\omega) Notes
1 Impulse \delta(t) 1 All frequencies equally
2 Constant 1 2\pi\,\delta(\omega) DC component only
3 Shifted Impulse \delta(t - t_0) e^{-j\omega t_0} Phase shift = time delay
4 Complex Exponential e^{j\omega_0 t} 2\pi\,\delta(\omega - \omega_0) Single frequency
5 Signum \text{sgn}(t) \dfrac{2}{j\omega} ±1 function
6 Unit Step u(t) \pi\,\delta(\omega) + \dfrac{1}{j\omega} Heaviside step

Common Functions

Widely-used signals and their transforms — the pairs you'll reference most often.

# Name f(t) F(\omega) Notes
7 Rectangular Pulse \text{rect}\!\left(\frac{t}{\tau}\right) \tau\,\text{sinc}\!\left(\frac{\omega\tau}{2\pi}\right) Width τ centered at 0
8 Sinc Function \text{sinc}(Wt) \frac{1}{W}\,\text{rect}\!\left(\frac{\omega}{2\pi W}\right) Dual of rect
9 Gaussian e^{-\alpha t^2} \sqrt{\frac{\pi}{\alpha}}\,e^{-\omega^2/(4\alpha)} Gaussian ↔ Gaussian
10 One-Sided Exponential e^{-\alpha t}\,u(t),\ \alpha > 0 \dfrac{1}{\alpha + j\omega} Causal decay
11 Two-Sided Exponential e^{-\alpha|t|},\ \alpha > 0 \dfrac{2\alpha}{\alpha^2 + \omega^2} Lorentzian spectrum
12 Triangular Pulse \Lambda\!\left(\frac{t}{\tau}\right) \tau\,\text{sinc}^2\!\left(\frac{\omega\tau}{2\pi}\right) rect ∗ rect
13 Cosine \cos(\omega_0 t) \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] Two impulses
14 Sine \sin(\omega_0 t) \frac{\pi}{j}[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] Odd symmetry
15 Comb (Impulse Train) \displaystyle\sum_{n=-\infty}^{\infty}\delta(t - nT) \frac{2\pi}{T}\displaystyle\sum_{k=-\infty}^{\infty}\delta\!\left(\omega - \frac{2\pi k}{T}\right) Comb ↔ Comb
16 Damped Cosine e^{-\alpha t}\cos(\omega_0 t)\,u(t) \dfrac{\alpha + j\omega}{(\alpha + j\omega)^2 + \omega_0^2} RLC circuit response
17 Damped Sine e^{-\alpha t}\sin(\omega_0 t)\,u(t) \dfrac{\omega_0}{(\alpha + j\omega)^2 + \omega_0^2} Oscillatory decay

Discrete Fourier Transform Pairs

For a sequence of length N, the DFT is:

X[k] = \sum_{n=0}^{N-1} x[n]\, e^{-j2\pi kn/N}
# Name x[n] X[k] Notes
18 Discrete Impulse \delta[n] 1 \text{ for all } k Flat spectrum
19 Constant 1 \text{ for all } n N\,\delta[k] DC only
20 DFT Sinusoid e^{j2\pi m n/N} N\,\delta[k - m] Single bin
21 Rectangular Window \begin{cases}1 & 0 \le n \le L{-}1\\0 & \text{else}\end{cases} e^{-j\omega(L-1)/2}\dfrac{\sin(\omega L/2)}{\sin(\omega/2)} Dirichlet kernel
22 Discrete Cosine \cos\!\left(\frac{2\pi m n}{N}\right) \frac{N}{2}[\delta[k{-}m] + \delta[k{+}m]] Two bins (symmetric)

Key Observations

Duality

Many pairs are symmetric: the Gaussian transforms to a Gaussian, the comb function transforms to a comb. If f(t) \leftrightarrow F(\omega), then F(t) \leftrightarrow 2\pi f(-\omega).

Uncertainty Principle

A signal cannot be simultaneously localized in both time and frequency. Narrower in time → wider in frequency and vice versa. The Gaussian achieves the theoretical minimum time-bandwidth product: \Delta t \cdot \Delta \omega \ge \frac{1}{2}.

Convergence

Some pairs (like the constant and signum) only exist in the distributional sense using Dirac deltas. Practically, these are handled via limiting sequences or the theory of tempered distributions.

Explore More Reference

See how these pairs behave under various operations, or grab the one-page cheat sheet.