Fourier Transform Cheat Sheet
Everything you need on one page. Bookmark this or print it for exams and lab work.
① Key Formulas
Continuous Fourier Transform
Forward
F(\omega) = \int_{-\infty}^{\infty} f(t)\,e^{-j\omega t}\,dt
Inverse
f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)\,e^{j\omega t}\,d\omega
Discrete Fourier Transform
Forward (DFT)
X[k] = \sum_{n=0}^{N-1} x[n]\,e^{-j2\pi kn/N}
Inverse (IDFT)
x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]\,e^{j2\pi kn/N}
Discrete-Time Fourier Transform
Forward
X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]\,e^{-j\omega n}
Inverse
x[n] = \frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\omega})\,e^{j\omega n}\,d\omega
FFT Complexity
Direct DFT
O(N^2) \text{ multiplications}
FFT (Cooley-Tukey)
O(N \log_2 N) \text{ multiplications}
For N = 1024: 1,048,576 → 10,240 — a 100× speedup.
② Essential Pairs
The 8 pairs you'll use most often. See the full table →
| Signal | f(t) | F(\omega) |
|---|---|---|
| Impulse | \delta(t) | 1 |
| Constant | 1 | 2\pi\delta(\omega) |
| Rect | \text{rect}(t/\tau) | \tau\,\text{sinc}(\omega\tau/2\pi) |
| Gaussian | e^{-\alpha t^2} | \sqrt{\pi/\alpha}\,e^{-\omega^2/4\alpha} |
| Exponential | e^{-\alpha t}u(t) | 1/(\alpha + j\omega) |
| Cosine | \cos(\omega_0 t) | \pi[\delta(\omega{-}\omega_0)+\delta(\omega{+}\omega_0)] |
| Comb | \sum\delta(t - nT) | \frac{2\pi}{T}\sum\delta(\omega - 2\pi k/T) |
| Signum | \text{sgn}(t) | 2/(j\omega) |
③ Key Properties
The 6 properties you'll reach for most. See all 15 properties →
Linearity
af + bg \leftrightarrow aF + bG
Time Shifting
f(t-t_0) \leftrightarrow e^{-j\omega t_0}F(\omega)
Convolution
f * g \leftrightarrow F \cdot G
Time Scaling
f(at) \leftrightarrow \frac{1}{|a|}F(\omega/a)
Differentiation
f'(t) \leftrightarrow j\omega\,F(\omega)
Parseval's Theorem
\int|f|^2 dt = \frac{1}{2\pi}\int|F|^2 d\omega
④ Common Relationships
Frequency Resolution
\Delta f = \frac{f_s}{N} = \frac{1}{T_{\text{record}}}
- f_s = sample rate, N = number of points
- More samples → finer resolution
- Higher sample rate alone does NOT improve resolution
Zero-Padding Effect
N_{\text{padded}} = 2^{\lceil\log_2 N\rceil} \text{ (next power of 2)}
- Interpolates the spectrum (smoother appearance)
- Does not add new information
- Does not improve true frequency resolution
- Useful for FFT efficiency (radix-2)
Windowing Trade-offs
| Window | Main Lobe | Side Lobes | Best For |
|---|---|---|---|
| Rectangular | Narrowest | −13 dB | Resolution |
| Hann | Medium | −31 dB | General |
| Hamming | Medium | −42 dB | Sidelobe control |
| Blackman | Wide | −58 dB | Dynamic range |
| Flat Top | Widest | −93 dB | Amplitude accuracy |
Nyquist-Shannon Sampling
f_s \ge 2\,f_{\max}
- f_{\max} = highest frequency present in the signal
- Violating this causes aliasing — high frequencies fold into low frequencies
- Anti-aliasing filter must precede the ADC
- Nyquist frequency: f_N = f_s / 2
⑤ Practical Tips
Choosing FFT Size
- Use power-of-2 sizes (N = 2^k) for fastest computation
- Want finer resolution? Collect more data (longer recording), not just more zero-padding
- Common sizes: 256, 512, 1024, 2048, 4096, 8192
- For real-time: balance latency (N/f_s seconds) vs. resolution (f_s/N Hz)
Handling Real Signals
- FFT of a real signal is conjugate symmetric: only bins 0 to N/2 are unique
- Use
rfftfor efficiency (half the output) - Bin k corresponds to frequency f_k = k \cdot f_s / N
- DC component at bin 0, Nyquist at bin N/2
Interpreting Magnitude & Phase
- Magnitude |X[k]|: strength of each frequency component
- Phase \angle X[k]: timing offset of each component
- Power spectrum: |X[k]|^2 / N or in dB: 10\log_{10}|X[k]|^2
- Phase is often noisy — only meaningful where magnitude is significant
- Use
unwrapon phase to remove 2\pi discontinuities
Spectral Leakage
- Occurs when signal frequency doesn't land on an FFT bin center
- Energy "leaks" into adjacent bins
- Fix: apply a window function before the FFT
- Trade-off: windowing improves leakage but widens spectral peaks
Overlap-Add / Overlap-Save
- For real-time filtering of long (streaming) signals
- Break input into overlapping blocks, FFT each, multiply by filter, IFFT
- Overlap-add: zero-pad and sum adjacent output blocks
- Overlap-save: discard edge samples, keep valid region
Quick Conversions
- \omega = 2\pi f (angular ↔ ordinary freq)
- T = 1/f (period ↔ frequency)
- dB magnitude: 20\log_{10}|H(f)|
- dB power: 10\log_{10}|H(f)|^2
- 3 dB down = half power = 1/\sqrt{2} amplitude
Need More Detail?
This cheat sheet covers the essentials. For the complete tables, see the full references.