Skip to main content

Fourier Transform Cheat Sheet

Everything you need on one page. Bookmark this or print it for exams and lab work.

Key Formulas

Continuous Fourier Transform

Forward

F(\omega) = \int_{-\infty}^{\infty} f(t)\,e^{-j\omega t}\,dt

Inverse

f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)\,e^{j\omega t}\,d\omega

Discrete Fourier Transform

Forward (DFT)

X[k] = \sum_{n=0}^{N-1} x[n]\,e^{-j2\pi kn/N}

Inverse (IDFT)

x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]\,e^{j2\pi kn/N}

Discrete-Time Fourier Transform

Forward

X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]\,e^{-j\omega n}

Inverse

x[n] = \frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\omega})\,e^{j\omega n}\,d\omega

FFT Complexity

Direct DFT

O(N^2) \text{ multiplications}

FFT (Cooley-Tukey)

O(N \log_2 N) \text{ multiplications}

For N = 1024: 1,048,576 → 10,240 — a 100× speedup.

Essential Pairs

The 8 pairs you'll use most often. See the full table →

Signal f(t) F(\omega)
Impulse \delta(t) 1
Constant 1 2\pi\delta(\omega)
Rect \text{rect}(t/\tau) \tau\,\text{sinc}(\omega\tau/2\pi)
Gaussian e^{-\alpha t^2} \sqrt{\pi/\alpha}\,e^{-\omega^2/4\alpha}
Exponential e^{-\alpha t}u(t) 1/(\alpha + j\omega)
Cosine \cos(\omega_0 t) \pi[\delta(\omega{-}\omega_0)+\delta(\omega{+}\omega_0)]
Comb \sum\delta(t - nT) \frac{2\pi}{T}\sum\delta(\omega - 2\pi k/T)
Signum \text{sgn}(t) 2/(j\omega)

Key Properties

The 6 properties you'll reach for most. See all 15 properties →

Linearity

af + bg \leftrightarrow aF + bG

Time Shifting

f(t-t_0) \leftrightarrow e^{-j\omega t_0}F(\omega)

Convolution

f * g \leftrightarrow F \cdot G

Time Scaling

f(at) \leftrightarrow \frac{1}{|a|}F(\omega/a)

Differentiation

f'(t) \leftrightarrow j\omega\,F(\omega)

Parseval's Theorem

\int|f|^2 dt = \frac{1}{2\pi}\int|F|^2 d\omega

Common Relationships

Frequency Resolution

\Delta f = \frac{f_s}{N} = \frac{1}{T_{\text{record}}}
  • f_s = sample rate, N = number of points
  • More samples → finer resolution
  • Higher sample rate alone does NOT improve resolution

Zero-Padding Effect

N_{\text{padded}} = 2^{\lceil\log_2 N\rceil} \text{ (next power of 2)}
  • Interpolates the spectrum (smoother appearance)
  • Does not add new information
  • Does not improve true frequency resolution
  • Useful for FFT efficiency (radix-2)

Windowing Trade-offs

Window Main Lobe Side Lobes Best For
RectangularNarrowest−13 dBResolution
HannMedium−31 dBGeneral
HammingMedium−42 dBSidelobe control
BlackmanWide−58 dBDynamic range
Flat TopWidest−93 dBAmplitude accuracy

Nyquist-Shannon Sampling

f_s \ge 2\,f_{\max}
  • f_{\max} = highest frequency present in the signal
  • Violating this causes aliasing — high frequencies fold into low frequencies
  • Anti-aliasing filter must precede the ADC
  • Nyquist frequency: f_N = f_s / 2

Practical Tips

Choosing FFT Size

  • Use power-of-2 sizes (N = 2^k) for fastest computation
  • Want finer resolution? Collect more data (longer recording), not just more zero-padding
  • Common sizes: 256, 512, 1024, 2048, 4096, 8192
  • For real-time: balance latency (N/f_s seconds) vs. resolution (f_s/N Hz)

Handling Real Signals

  • FFT of a real signal is conjugate symmetric: only bins 0 to N/2 are unique
  • Use rfft for efficiency (half the output)
  • Bin k corresponds to frequency f_k = k \cdot f_s / N
  • DC component at bin 0, Nyquist at bin N/2

Interpreting Magnitude & Phase

  • Magnitude |X[k]|: strength of each frequency component
  • Phase \angle X[k]: timing offset of each component
  • Power spectrum: |X[k]|^2 / N or in dB: 10\log_{10}|X[k]|^2
  • Phase is often noisy — only meaningful where magnitude is significant
  • Use unwrap on phase to remove 2\pi discontinuities

Spectral Leakage

  • Occurs when signal frequency doesn't land on an FFT bin center
  • Energy "leaks" into adjacent bins
  • Fix: apply a window function before the FFT
  • Trade-off: windowing improves leakage but widens spectral peaks

Overlap-Add / Overlap-Save

  • For real-time filtering of long (streaming) signals
  • Break input into overlapping blocks, FFT each, multiply by filter, IFFT
  • Overlap-add: zero-pad and sum adjacent output blocks
  • Overlap-save: discard edge samples, keep valid region

Quick Conversions

  • \omega = 2\pi f (angular ↔ ordinary freq)
  • T = 1/f (period ↔ frequency)
  • dB magnitude: 20\log_{10}|H(f)|
  • dB power: 10\log_{10}|H(f)|^2
  • 3 dB down = half power = 1/\sqrt{2} amplitude

Need More Detail?

This cheat sheet covers the essentials. For the complete tables, see the full references.